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AIIIInct-This paper presents a boundary element method (SEM) formulation and numerical
implementation of thermoelasticity problems in nonhomopneous media. The formulation uses
the known kernels of the displacement equations for elasticity problems in homogeneous media.
This formulation leads to a domain intearaJ containina the unknown displacement field in
addition to the usual boundary inteara1s with displacements and tractions. An iterative scheme
is used to detennine the displacement fields.

Numerical results are presented for some illustrative plane strain problems. The iterative
scheme is shown to converse rapidly for these problems with moderate temperature aradients.
The BEM results are compared with results from the finite element method (FEM) for these
problems, and also with exact solutions whenever possible.

INTRODUCTION

The subject of this paper is the solution of thermoelasticity problems in general non
homogeneous media by the boundary element method (BEM). Such problems are ofinterest
in many engineering applications where metallic components are loaded in the presence of
thermal gradients. The most common reason for interest in nonhomogeneous media arises
from the fact that material parameters such as the Young's modulus are temperature
dependent. Thus, if such a dependence is included in the mathematical model, the material
parameters become functions of temperature and hence of position within the body.

The corresponding problem in a homogeneous medium has been solved before by the
BEM (see, e.g. Rizzo and Shippy[l]). In their paper, Rizzo and Shippy used the well known
fundamental solutions of the Navier equations governing displacements in an elastic solid.
Unfortunately, however, such fundamental solutions are not known, in general, for a
nonhomogeneous medium. One possibility is to obtain a BEM formulation based on the
fundamental solutions of the homogeneous medium problem, as has been suggested by
Butterfield[2] for potential flow problems in nonhomogeneous bodies. This approach leads
to a domain integral involving the unknown displacement field in addition to the usual
boundary integrals. Such an approach has been adopted in this paper.

There have been some recent attempts by Tanaka and Tanaka[3, 4] to obtain integral
formulations for heat conduction and thermoelasticity problems in nonhomogeneous
media, but these papers are mathematical in nature and do not contain any numerical
results. The present paper describes a BEM formulation and numerical implementation for
plane strain thermoelasticity problems in nonhomogeneous media. Careful attention is paid
to important practical questions such as accurate numerical evaluation ofsingular integrals
and the development of an iterative algorithm for the calculation of the displacement field.
While the mathematical formulation and numerical solution method are valid for problems
involving general nonhomogeneous media, the numerical examples presented here are
concerned with problems where the spatial dependence of the young's modulus arises from
its dependence on temperature. The BEM numerical results for illustrative problems are
compared with results from the finite element method (FEM) as well as with an exact
solution which is available for a simple example. The efficiency and accuracy of the two
methods-BEM and FEM-are compared in the context of solution of problems in
nonhomogeneous media. Readers interested in the power and range ofapplicability of the
BEM are referred to two recent books on the subject, one by BaneIjee and Butterfield[5] and
the other by Mukherjee[6].
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GOVERNING EQUATIONS FOR PLANE STRAIN PROBLEMS

Navier equations for displacements
Plane strai~ problems are considered in this paper. The cross section of the body is

assumed to lie in the Xt-X2 plane and the displacement and strain components in the
transverse direction, 413 and E33' are taken to be zero. The first assumption made for this
thermoelastic problem is that each component of the strain tensor Ei) can be additively
decomposed into an elastic and a thermal part E~) and 4T), respectively. Thus,

(1)

where a is the coefficient of thermal expansion, T is the temperature (above some datum
value) and au is the Kronecker delta. The range of indices in eqn (1) is i = I, 2;j = 1,2. It
is also valid for the transverse direction, in which

£33 = £~1+ aT = O. (2)

The elastic strain tensor is related to the stress tensor (Ii) through the usual Hook's law.
The stress tensor satisfies the equilibrium equations and the total strain is related to the
displacements "I through the usual kinematic relations

(3)

The range of indices in eqn (3) and subsequent equations is I, 2.
The equations of equilibrium can be written in terms of displacements by combining

them with the constitutive and kinematic equations. Assuming the Lame parameters Aand
Jl( = G) to be functions of the spatial coordinates, the resultant Navier equations for
thermoelastic deformation in a nonhomogeneous medium are

where the new symbols used are v, the Poisson's ratio and Ft, the components of the body
force vector per unit volume.

The usual mechanical boundary conditions, e.g. displacements, tractions or combina
tions therof must be prescribed on the boundary aB of the body. The components of the
traction vector 'tl at a point on the boundary aB are given by the equation

(5)

where nl are the components of the unit outward normal to aB at that point.
The temperature field must be obtained by solving the diffusion equation with the

appropriate thermal boundary conditions. In this paper, a steady state temperature field is
assumed to prevail, so that

(6)

where V2 is the Laplacian operator in the Xt-X2 plane. The thermal problem is solyed first
and the temperature field is then input into eqns (4) and (S). The material parameters A, G
(and hence v) are either prescribed functions of position or of temperature. In either case,
they are known as functions of the spatial coordinates once eqn (6), with its appropriate
boundary conditions, has been solved.

Direct BEM formulation for displacements
A BEM formulation for the displacement field is obtained by following the method

outlined by Butterfield[2] for potential flow problems in nonhomogeneous media. The
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auxilliary solution chosen here is that for homogeneous, isotropic, linear elasticity [7], i.e.

where u1 satisfies the equation

• 1. t1(p,q) ~
ulJj+-l2 Ulokl= --G- Ujjej '

- vo 0

(7)

(8)

In the above vo and Go are base properties for the homogeneous problem, t1 is the Dirac
delta function and ej are unit orthogonal base vectors. The two point function V jj is the
displacement at a field point q in the ; direction due to a unit load at a source point p in the
j direction. The function Uvfor plane strain is available in many references (see, e.g. [5-7]).
The components ofthe traction vector t rin the homogeneous elasticity problem are related
to the gradients of the displacement field according to the equation

(9)

Multiplying both sides ofeqn (4) by u;- and integrating over the domain B ofthe body results
in the equation

I. ur[GUI.ff + I ~2'1' UUI + l.!tu + GiUIJ + Uj,i)}A

[ .[ (I + v) ]=J. UI -~+2G (l_2v)cxT,;+cxT(31./+2G.J dA. (10)

Using the definitions of tractions in eqns (5) and (9), and the divergence theorem, eqn
(10) can be reduced to the form

G~)Uj(p)= I48[ Vu(p, Q}r.(Q)- G~:)TII(P,Q)UiQ)JdCQ

+ f.HVu,t<p,q) + Ukj,;{p,q)} Giq) + Ukj,k(p,q)l,/(q)]u/(q)dA,

[ [ (I + v(q» ]+ J. U/j(p,q)F/(q) + 2Uij,;{p,q)G(q) I _ 2v(q) cxT(q) dA,

- f. U~,k(P.q>[G(q){ I _ ~V(q) - I _1 2J1Ju~q)] ,/ dAq (II)

where the two point function Tii is the usual one for homogeneous elasticity (see, e.g.
[5-7]). lower case letters p and q denote points inside the body B and capital letters P and
Q denote points on the boundary oB. A comma denotes a derivative with respect to a field
point and dCQ and dA, are boundary and area elements respectively.

Equation (11) is seen to contain the unknown displacement field inside two of the
domain integrals in addition to being in the boundary integral in the usual way. This is
a consequence of the fact that the known fundamental solutions for the elasticity problem
in a homogeneous medium (rather than for the nonhomogeneous medium which are. in
general. not known) have been used to derive eqn (11). A domain integral containing the
unknown function also occurs in plasticity (see. e.g. [5]) and in viscoplasticity problems
with large strains[8]. The presence of domain integrals containing the unknown displace
ment field in eqn (11) requires iterations in order to arrive at the solution. This has been
done in order to obtain the numerical solutions presented later in this paper.

A major simplification in eqn (11) occurs if the Poisson's ratio is assumed to be a
constant. This is justifiable in problems with temperature dependent elastic properties since
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V is typically a weak function of temperature. Making this assumption with Vo = v and
ignoring body forces, yields a simplified form of eqn (II)

It should be noted that if G does not vary in space, the first domain integral on the
r.h.s. of eqn (12) drops out and the resulting equation reduces to that for the case of
thermoelastic deformation in a homogeneous medium (see, e.g. [9]). Also, as expected, eqn
(12) is independent of the particular choice of the base shear modulus Go. This becomes
obvious once the explicit forms of Vij and Tij are taken into account in eqn (12).

The boundary integral equation is obtained from eqn (12) in the usual way by taking
the limit as an internal point p approaches a point P on aBo This gives the equation

The tensor c;) is a function of the local geometry and the location of P and is available
in other publications (e.g. [6,10]). If the boundary is locally smooth at P, cij =(DeS;).

The numerical implementation of eqn (13), that has been used to solve (13) for the
displacement field, is described in the next section of the paper.

Internal stresses
Once the displacement field has been obtained throughout the body, the displacement

gradients must be obtained by differentiating the displacement field. The stresses can then
be obtained from Hooke's law

(14)

The displacement gradients can be obtained by one of two methods.
Analytical differentiation. In this approach, eqn (12) is differentiated at an internal

source point to give

This approach has the advantage ofdelivering a continuous strain and stress field inside
B. The difficulty in implementing this method arises from the fact that, since U;),,, has a
I/r singularity, the last two integrals must first be integrated analytically for an arbitrary
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source point p and then differentiated at p. This approach has been implemented in [6] for
problems where integrals of the type Is Ujj.,,(p,q) dA, are involved. In this problem,
however, the domain integrals also contain the shear modulus, unknown displacement
field, temperature etc. The complicated nature of the domain integrals renders the
analytical differentiation method difficult to implement in this problem.

Numerical differentiation. In this approach, the displacements are interpolated within
each internal cell by suitable shape functions and then these shape functions are
differentiated element wise to give the strains. This strategy, therefore, uses the BEM to
determine displacements throughout the body and then a method analogous to the FEM
to obtain the strains. This method can be easily implemented but has the disadvantages
of allowing discontinuities in stresses at internal nodes and across inter-cell boundaries.

NUMERICAL IMPLEMENTATION OF BEM
Some of the details of the numerical implementation of the BEM equations are given

in this section. Further details are available in the M.S. Thesis of Ghosh[1 1].

Discretized equations
The boundary of the body aB is discretized into N, straight segments and the interior

is discretized into nj triangular cells. A discretized version of eqn (13) is written as

(16)

where PM is a boundary point P that coincides with a node M.
The temperature field is first obtained on aB and in B by solving the steady heat

equation by the BEM. Suitable shape functions must now be chosen for the tractions,
displacements and temperatures on aB and in B. The traction and displacement com
ponents and the temperature are assumed to be piecewise linear on the boundary segments
.dCN' Double nodes are placed at comers in order to allow for jumps in normals or traction
components across them.

The shear modulus is assumed to be a linear function of temperature

(17)

Experimental results[12] show that this is a fairly good assumption unless the temperature
is very high. Of course, this assumption can be relaxed and G can be made a nonlinear
function of temperature.

'The displacements and temperature are assumed to be piecewise linear on the triangular
internal cells .dA. with the sampling points placed at the vertices of each triangle. By virtue
of eqn (17), the shear modulus becomes piecewise linear and the gradients of G become
piecewise constant on the internal cells. The gradients of G could have been evaluated
pointwise internally from the equation

aG
G,I == aT 1'", (18)

In such a case, shape functions for temperatures on internal cells would become
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unnecessary. This procedure would be more accurate than the one used here but would
be much more expensive.

Evaluation of boundtlry integrals in eqn (16)
As mentioned before, the tractions, displacements and shear modulus are piecewise

linear on straight boundary segments. Hence, GUj is piecewise quadratic on these segments.
The boundary integrals are evaluated analytically. This involves integration of functions
of the type

as well as

where c is the distance measured along a boundary segment of length Ltc. Analytical
integration of singular kernels is the most accurate way to obtain these integrals and is
recommended whenever possible. This has been done here and further details are available
in [II].

Evaluation of area integrals in eqn (16)
The kernel UIj.k has a singularity of the type I/r. Thus, the three area integrals in eqn

(16) must be detennined with great care. Analytical integration is perhaps possible here
but is cumbersome. Instead, accurate numerical schemes have been used. These are
described below.

Regular integrals. If the source point lies outside the internal cell over which the integral
has to be e~aluated, the integrand is regular. In this case, Gaussian quadrature with seven
Gauss points in each triangle has been used.

Singular integrals. If a source point lies on or inside an internal cell, the integrand is
singular. 'fPe latter case can arise when the displacements are evaluated at internal points.
In this case, an analytical transfonnation prior to Gaussian quadrature has proved to be
very useful. This transfonnation has been described in detail in [6,11,13]. The integrals
in the transfonned (square) domains are evaluated with nine Gauss points per square.

Iterative scheme for displacements
Numerical discretization transfonns eqn (l6) into an algebraic system of the type

[A]{u} + [B]{r} = [C] + [D] (19)

where the coefficient matrices [A] and [B] contain boundary integrals of the kernels, Vii'
etc. [C] represents the area integrals containing components of the unknown displacement
field and [D] is obtained from the last (known) integral in eqn (16). The presence of Uj in
the matrix [C] requires iterations in order to solve eqn (19). This procedure is described
below.

(a) The starting values of the internal displacements are taken to be zero. Equation
(19), with [C] = 0, is solved for the unknown boundary components of the displacements
and tractions in terms of the prescribed ones and the known matrix [D]. The matrix [D]
is only calculated once and remains invariant throughout the iterative process.

(b) With [C] still equal to zero, the boundary values of {u} and {T} are used in a
discretized version of eqn (12) to yield the first approximation to the internal displacement
field.

(c) A first approximation to [C] is obtained with the internal displacement field from
step (b), and eqn (l9) is solved again to obtain the second approximation to the boundary
values of {u} and {r}. All these quantities are then used in the discretized version of egn
(J 2) to yield the second approximation to ul(P).
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(d) Step (c) is repeated as many times as necessary till convergence is achieved and the
displacement field is known everywhere and the traction field is known on oB.

Evaluation of internal stresses
A finite element type approach has been used here to obtain the displacement gradients

from the displacement field. The piecewise linear internal displacement field is
differentiated to yield piecewise constant displacement gradients on the internal cells. The
internal stresses are then obtained from eqn (14).

EII(lIU(lI;OIl of houndary slrC'.fses

The boundary stresses can be aceurately determined from operations only on the
boundary. Once the displacements and tractions are evaluated on the boundary, the
tangential derivatives of the displacements, (ouJoc), are obtained by differentiating the
boundary shape functions. All the components of boundary stresses can now be obtained
from the constitutive and stress-traction equations. Details of this procedure are available
in [6, 11, 14].

THE STEADY STATE TEMPERATURE FIELD BY THE BEM

The uncoupled steady state temperature field throughout B and on eB must be obtained
before the thermoelastic problem can be attempted. This is done here by solving Laplace's
equation

(20)

by the DEM. The admissible boundary conditions are prescribed T, or (eTlan) or combina
tions thereof on the boundary oB of the body.

The BEM solution of this problem is obtained in standard fashion by the direct BEM
method (see [5]). The boundary-integral equation, in this case, is

c(P)T(P) =18[E(P, Q)T(Q) - F(P, Q) ~~ (Q)] dcC,!

where the kernels are

101
E = -- (In 'PQ)' F = -In rPQ

21t on 21t

(21)

where r1'Q is the distance between P and Q and c =d121t, «being the included angle at the
corner at P.

As before, the boundary aB is discretized into N. straight boundary elements. The
temperature and its normal derivative are assumed to be piecewise linear on the boundary
segments. Double nodes are placed at comers to allow for jumps in (oT/on) across them.
The kernels are integrated analytically. The discretized version of eqn (21) is solved for the
unspecified components of T and (eT/on) in terms of the prescribed ones. Once T and
(eT/en) are known on oB, an equation analogous to (21) for an internal pointp is used to
obtain the temperature distributio~ throughout B. Further details of this procedure are
available in [11].

THE FINITE ELEMENT METHOD

The BEM results for specific problems are compared with those obtained by the FEM.
The FEM computer program that has been used here has been described earlier in [5].
Triangular finite elements are used in the program with piecewise quadratic displacements
(LST) (as opposed to piecewise linear displacements in the BEM). Integrals over each
element are carried out by Gaussian quadrature with seven Gauss points per element. The
temperature dependent Young's modulus is taken to be piecewise constant over the finite
elements.
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NUMERICAL RESULTS FOR PLANE STRAIN PROBLEMS

Material parameters
The material parameters used in the numerical calculations are representative of 304

stainless steel. The parameters used are (see eqn (17))

V= 0.3

k2 = -1.915 X 1O- 4°C- 1

a = 0.125 X 1O- 4oC- ' .

Problems considered
Two types of illustrative problems are considered in this paper. The first type is a square

cross-section in plane strain subjected to a temperature gradient. This problem is solved by
the BEM and FEM and these results are compared against an exact solution which can bt:
obtained for this problem. The second class ofproblems is that ofa thick cylinder subjected
to a temperature gradient with and without internal pressure. The BEM and FEM results
for displacements and stresses are compared with each other for these problems.

Square cross-section in plane strain
This is a simple problem in which a unit square cross-section is subjected to a tem

perature gradient in the X2 direction and constrained in XI direction as shown in Fig. 1. The
main reason for choosing this problem is computer code verification.

(aJ

lbl

I-- lj I
1.0 • leI

Fig. 1. Square cross-section subjected to a temperature variation along the X2 dire~tion and free
to expand in X2 direction only. (a) BEM mesh with 12 boundary nodes and 8 mternal cells.
(b) BEM mesh with 14 boundary nodes and 16 internal cells, (c) FEM mesh with 25 nodes and

8 elements.
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An exact solution for this problem can be easily obtained as

(22)

with all other components of stress and displacement equal to zero.
This problem has been solved with a coarse and a fine BEM mesh and a FEM mesh as

shown in Fig. I. The temperatures are taken as T. = 300e and T2 = sooe.
The results for displacements and stresses are tabulated in Tables I and 2, respectively.

Table I. Displacement solutions (U2) in (inches) in the X2 direction for a nonhomogeneous square plate
with 11 = 3O"C and 12. = SO"C.

POINT COORDINATE EXACT BEM BEM FHJ

X2 12 8. NODES 14 B. NODES 8 ELE~IENTS

(0.25) 0.188616 X 10. 3 0.188847 X 10'3 0.1885971 X lU· 3

(0.5) 0.40625 X 10'3 0.406988 X 10'3 0.406792 X 10'3 0.4062622 X 10. 3

(0.75) 0.65290 X 10'3 0.653823 X 10'3 0.6528919 X 10. 3

(1. 0) 0.928571 X 10. 3 0.932055 X 10'3 0.931055 X 10'3 0.928474 X lU' 3

(0.125) 0.906808 X 10.4 0.87158 X 10'4

(0.375) 0.293805 X 10'3 0.294089 X 10'3

(0.625) 0.525948 X 10. 3 0.526798 X 10. 3

(0.875) 0.7871094 X 10'3 0.793902 X 10. 3

Table 2. Stress (0'11) distribution along the Xz direction in (psi) for the nonhomogeneous square plate with
1. =3O"C and 1z =SO"C.

POINT COORDINATE EXACT BHI BEM FEM
X2 12 B. NODES 14 B. NODES 8 ELEMENTS

0.04166 · 16469.938 16789.2

0.125 17345.738 17329.80

0.1666 · 17783.07 · 17033.3 · 17774.0.9

0.208333 18220.034 17869.4

0.25 18656.625 • 18580.9
0.29166 • 19092.84 18919.0

0.3333 19528.86 · 20169.1 • 19537.64

0.375 19964.27 19942.8

0.45833 • 20834.19 20964.7

0.5 21268.55 · 21215.6 21242.4

0.54166 21702.55 21494.2

0.625 22569.43 22543.4

0.6666 · 23002.508 • 22244.7 • 22990.55

0.7083 23435.02 · 23590.9

0.75 • 23867.16 23907.1

0.7916 · 24298.93 • 23328.7

0.8333 · 24730.33 • 25262.5 • 24721.9

0.875 · 25161. 361 25054.4

0.9583 • 26022.52 26777.2

1.0 • 26452.446 • 26168.2 26240.9..__ ..-.-.
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The FEM results are virtually exact. The BEM results, particularly with the fine mesh, are
also excellent, the maximum deviation from the exact solution being of the order of one
percent for the displacement and two percent for the stress, with most of the results lying
within about half a percent of the exact solution. The BEM solution converges rapidly
within four of five iterations. It must be noted here that the BEM computer program uses
piecewise linear displacements on boundary elements as well as on the internal cells, while
the FEM uses piecewise quadratic displacements on the finite elements.

The thick cylinder
A thick cylinder in plane strain is considered here. The cylinder has inner and outer

radii of I in. and I.S in., respectively. The inner curved surface is at a temperature T1 and
the outer one is at a temperature T2• The lateral surfaces of the cy~inder are insulated so
that there is only a radial temperature gradient. The cylinder is subjected to an internal
pressure Pi'

The BEM and FEM discretizations for the problems are shown in Fig. 2. The number
of internal element&-40-is the same for both. The FEM mesh has 99 nodes while the
BEM mesh has 22 boundary nodes (including four double nodes).

Thermal loading only. In these examples, T1 =30°C, T2 =SO°C or 200°C and Pi =O. The
displacements calculated from the two methods, as functions of radial location, are shown
in Figs. 3 and S and the corresponding circumferential stresses are shown in Figs. 4 and
6, respectively. The traction results for U(J(J in Figs. 4 and 6 are those obtained from the
boundary tractions along the edge X2 =0 of the quarter cylinder (see Fig. 2). The stresses
at the internal points are obtained by interpolating the displacements (from the BEM eqn
(12» on internal cells and then differentiating the shape functions for each element. These
stresses are referred to as those obtained by the "mixed BEM" approach in Figs. 4 and
6. The displacement and stress results from the two methods are very close. The FEM

(0)

TZ" psin'

(b)

TZaplln'

(e)

Fig. 2.(a) Thick cylinder with internal pressure and radial temperature distribution. (b) BEM mesh
with 22 boundary nodes and 40 intemal cells. (c) FEM mesh with 99 nodes and 40 clements.
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Fig. 3. Radial displacements in the nonhomogeneous cylinder with internal temperature TI = 3O"C
and external temperature T2 - SO·C.
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Fig. 4. Circumferential streues in the Dollhomoaencous cylinder with internal temperature
T. - 3O·C and exterDal temperature T2 - .5O"C.
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Fig. 5. Radial displacements in the nonhomogeneous cylinder with internal temperature T• ... 30°C

and external temperature T2 - 200°C.

.. '.. '.. ,

1.4 1.5

Distance (r) (in)

LEGEND

From boundory IroctiOns

Miaed BEM - Int81llCl1 points

FEM - int.rnol points

1.1
o·.---+---~':;\_--+----+----+

1.0

-'0.000

-20,000

-'iii
Cl.

-30,000
Fig. 6. Circumferential stresses in the nonhomoaencous cylinder with internal temperature

T. - 3O"C and external temperature T2 ... 200°C.
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Fig. 8. Circumferential straleS in .the nollhomopneous cylinder with intemal prasureP, - SOC! psi,

internal temperature T. = 3O"C and external temperature T2 = SO"C.
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Table 3. Computation time comparison in (sec)

BHI BHI FEM
(12 Boundary Nodes) (14 Boundary Nodes) (8 Elements)

Square Plate 1. 116 2.417 0.365

.__ .__ ._.._---------_._. --- ._--------

Cylinder with Thermal Loading Only

(T 1 = 30° C and T2 • 50° C)

Cylinder with Thermal Loading Only

(T l = 30° C and T2 = 200° C)

Cylinder with Thl'rmaJ Loadinl( and

Internal Pressure

BEM
(22 Boundary Nodes)

10 .01

12.678

10.02

FEM
(40 Elements)

2.814

2.701

2.831

displacements are slightly lower than those from the BEM. A direct solution is not
available for this problem.

Thermal and mechanical loadings. In this last example, T1 = 30°C, T2 = 50°C and
Pi = 500 psi. Comparison of displacements and stresses from the two methods appears in
Figs. 7 and 8, respectively. Once again, the displacements solutions are very close to each
other and the stress solutions are quite close. The BEM displacement solutions again
converge within a few iterations.

Computer times
The c.p.u. times on an IBM 370/168 for the above problems are given in Table 3. The

FEM times are seen to be considerably less than the corresponding BEM times for this
first BEM attempt.

DISCUSSION

This paper reports on part of a continuing research effort by Mukherjee and his
co-workers at Cornell University aimed at critically evaluating the accuracy and efficiency
of the BEM for a wide class of boundary value problems in solid mechanics. Previous
publications have reported on BEM solutions to several elasticrviscoplastic problems
relating to planar and axisymmetric deformation, torsion of bars, bending ofplates as well
as creep-fracture[6]. Recently, the BEM has been used to solve viscoplasticity problems in
the presence oflarge strains and deformations [8] and a paper comparing the BBM and FEM
for a simple boundary value problem for Laplace's equation is to be published soon [16].
This is a first attempt at solving thermoelasticity problems in nonhomogeneous media by the
BEM.

The finite element method is a natural for nonhomogeneous problems since variational
or Galerkin type formulations easily accomodate spatial variation ofelastic properties. The
BEM attempt here uses the kernels of the elasticity problem in a homogeneous medium to
solve thermoelastic problems in a nonhomogeneous medium. This approach requires
iterations in order to arrive at the displacement field. This BEM formulation is demon
strated to deliver accurate results for several sample problems within just a few iterations.

The computational effort for this first BEM attempt is seen to be larger than the
corresponding FEM solutions. It is expected that the accuracy and efficiency of the BEM
can be further improved if fundamental solutions for nonhomogeneous media become
available. An algorithm to determine internal stresses pointwise by analytical differentiation
ofthe displacement field should improve the accuracy ofthe BEM stresses. Finally, the BEM
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computer times can possibly be improved by "fine tuning" of the existing first attempt BEM
code.
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